P(x)=-14x^2+1540x-25.200

Simple and best practice solution for P(x)=-14x^2+1540x-25.200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=-14x^2+1540x-25.200 equation:



(P)=-14P^2+1540P-25.200
We move all terms to the left:
(P)-(-14P^2+1540P-25.200)=0
We get rid of parentheses
14P^2-1540P+P+25.200=0
We add all the numbers together, and all the variables
14P^2-1539P+25.2=0
a = 14; b = -1539; c = +25.2;
Δ = b2-4ac
Δ = -15392-4·14·25.2
Δ = 2367109.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1539)-\sqrt{2367109.8}}{2*14}=\frac{1539-\sqrt{2367109.8}}{28} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1539)+\sqrt{2367109.8}}{2*14}=\frac{1539+\sqrt{2367109.8}}{28} $

See similar equations:

| 6x+7=1+4x | | 1/4=1/2+x/4 | | 1/2+x/4=1/4 | | (4x+1)^3/2=27 | | 4q+14=5q-2 | | -r-13=-2r+3 | | Y=2x2+7x+3 | | 4*x-6x2*x-16=0 | | x/20=89/100 | | 16t^2+45t+400=0 | | 5^x-4^x=61 | | 3.9x10^11=(0.010)(2x)^2 | | 10+7y=10y+19 | | 10y+7=18y+5 | | 2-3(x-6)=2(x+4)-8 | | X2+96x+256=0 | | 8=0.2^x | | 14=1/2b7 | | 5y2=2y+2 | | (3/4)y+2y=1/2+4y-3 | | 3n+4-2n=8 | | (a-2)(a-5)=0 | | -7y=9+18 | | 4(x+2)-5=2(x-1)+7 | | 3x(5x-7)-2(9x-11)=4(8x-13-17) | | 12+15y=2y+7 | | 10-5y=4 | | X2-x+90=0 | | 9/4u-7/8=-1/2 | | -5=5x=30 | | P=3^2+3t | | Y(2x)=55 |

Equations solver categories